

BRIDGING TO CHEMISTRY FOR CONSERVATION A DISTANCE STUDY COURSE

COURSE INSTRUCTOR: DR CHRISTIAN DREYER DURATION: 4 MONTHS (recommended)

THE SOUTH AFRICAN INSTITUTE FOR HERITAGE SCIENCE & CONSERVATION

Registered as: The South African Institute for Heritage Science (Pty) Ltd. Registration Number: 2015/317414/07

B SCENCE & CONSERVATION

Bridging to Chemistry for Conservation

A Distance Study Course

Course Instructor: Dr Christian Dreyer Duration: 4 months (recommended)

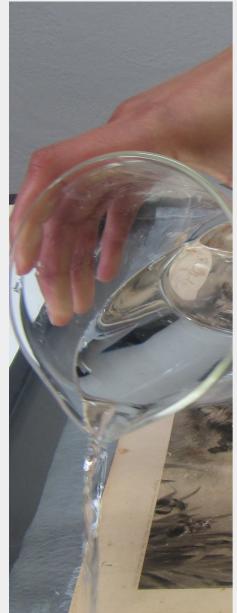
The course covers the themes indicated below. Each theme is subdivided into units and sub-units, as indicated.

Theme	Units	Sub-units
Particles and bonding	Atomic structure and ion formation	 The nucleus of an atom Isotopes Electron configurations Ion formation
	The Periodic Table	
	Chemical bonding and related physical properties	Covalent bondsIonic bondsMetallic bonds
	Electronegativity and intermolecular forces	 Electronegativity, polar and nonpolar covalent bonds Polar and nonpolar molecules Intermolecular forces
The mole concept and stoichiometry	Balanced equations for chemical reactions	
	The mole concept	
	Stoichiometric calculations	
	Molarity of a solution	
Acids and bases	Acids	 Formation of hydronium ions Strong and weak acids Ionization of water The pH scale regarding acids Indicators for pH Reactions of acids with metals, metal oxides, metal hydroxides, metal carbonates and ammonia Acidic oxides Acidic buffer solutions
	Bases and alkaline solutions	 Strong and weak bases The pH scale regarding bases Alkaline buffer solutions Neutralization
	Salt hydrolysis	 Acidic salt solutions with pH<7 Nearly neutral salt solutions with pH approximately 7 Alkaline salt solutions with pH>7
	Acid-base tritrations	

Bridging to Chemistry for Conservation

A Distance Study Course

Course Instructor: Dr Christian Dreyer Duration: 4 months (recommended)


Theme	Units	Sub-units
Reaction kinetics and equilibrium	Reaction kinetics	Reaction mechanismMain factors influencing reaction rate
	Chemical equilibrium	 Dynamic equilibrium of a reversible reaction in a closed system Equilibrium constant for a dynamic equilibrium
	Le Chatelier's Principle	Applied to a change in concentrationApplied to a change in pressureApplied to a change of temperature
	Equilibrium in buffer solutions	Acidic buffer solutionsAlkaline buffer solutions
Solubility & Precipitation	Dissolution of solids	Dissolution of molecular solidsDissolution of ionic salts
	Precipitation	
	The common ion effect	A qualitative discussionA quantitative discussion
	Complex ions and solubility	 The diammine silver (I) ion Increase in the solubility of silver bromide by complex ion formation
Redox Chemistry	Balancing redox reactions by using half reactions	 The net ionic equation for a redox reaction Basic terms regarding redox chemistry Balancing a redox reaction taking place in an acidic medium
	Spontaneous and non-spontaneous redox reactions	
	Electrochemical cells which release energy	The zinc copper cellThe use of the standard hydrogen electrode as reference electrode
	Electrolysis and electroplating	
Basic Organic Chemistry	Hydrocarbons	 Alkanes as saturated hydrocarbons Saturated cyclic compounds Unsaturated hydrocarbons Unsaturated cyclic compounds
	Halogenated compounds	
	Oxygenated compounds	AlcoholsEthersCarbonyl compoundsCarboxylic acidsEsters
	Nitrogen containing compounds	

Bridging to Chemistry for Conservation

Distance Study Course

Course Instructor: Dr Christian Dreyer Duration: 4 months (recommended)

This course was developed for conservators and conservation students emerging from the humanities, or any candidate lacking an adequate foundation in the physical sciences.

EACH of this course's seven themes includes the following:

- 1. an introduction which includes outcomes for the theme
- 2. study material for each of the units into which the theme is subdivided
- 3. a number of projects which the student needs to complete and submit
- 4. an online test, in which a mark of 60% must be attained in order to pass

No fixed calendar schedule is prescribed: Rather, the student largely works through the course material in their own time and pace - a process in which they are matched and accompanied by their course instructor. This accompaniment accordingly occurs on an entirely individualized basis.

The majority of the projects (point 3) entail questions / problems to which the student must submit the answers, followed by tutor feedback - provided to students in short succession to their respective submissions.

In addition to providing ongoing, written feedback on the student's completed projects, the course instructor also engages each student in at least six one-on-one video exchanges via the Zoom platform. The first of these video sessions is of an orientational nature, scheduled once the student signifies his/her readiness to engage the course material - or upon submission of the first project.

A further three video sessions serve the purpose of providing guidance and discussion, along with feedback on assessments. A further two video sessions serve to conduct certain practical exercises, coordinated between the student and two faculty members from the Institute.

These, in-lab sessions are initiated by the course instructor once the required progress milestone has been reached by the student.

Note that these intermittent live sessions are each scheduled quite independently to ensure the student's practicable convenience - also readily yielding to time zones - while flexibly stepping around any occasional and/or fixed commitments or occupied days on the part of the student.

A distance study course

Enrolment prerequisites: None

Course duration: 4 months (recommended maximum)

Tutor: Dr Christian Dreyer

Starting date: Registration open throughout the year Course fee: USD 795.00 / € 700.00 / GBP 625.00

Please enquire about the availability of part-bursaries. Certificate of attainment & scored Course Report follow completion.

(Digital versions are furnished)